Effect of Simulated Microgravity Conditions on Differentiation of Adipose Derived Stem Cells towards Fibroblasts Using Connective Tissue Growth Factor

Authors

  • Farid Ebnerasuly Department of Biology, Fars Science and Research Branch , Islamic Azad University, Marvdasht, Iran | Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
  • Mojtaba Darbouy Department of Biology, Fars Science and Research Branch , Islamic Azad University, Marvdasht, Iran | Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
  • Seyed Mehdi Tabaie Medical Laser Research Center, Iranian Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
  • Zahra Hajebrahimi Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, Iran
Abstract:

Background: Mesenchymal stem cells (MSCs) are multipotent cells able to differentiating into a variety of mesenchymal tissues including osteoblasts, adipocytes and several other tissues. Objectives: Differentiation of MSCs into fibroblast cells in vitro is an attractive strategy to achieve fibroblast cell and use them for purposes such as regeneration medicine. The goal of this study was investigate the simulated microgravity effect on differentiation of Adipose Derived Stem Cells (ADSCs) to fibroblasts. Materials and Methods: To fibroblast differentiation 100 ng.mL-1 of connective tissue growth factor (CTGF), and for simulation microgravity, 2D clinostat was used. After isolation the human ADSCs from adipose, cells were passaged, and at passages 3 they were used for characterization and subsequent steps. After 7 days of CTGF and simulated microgravity treatment, proliferation, and differentiation were analyzed collectively by MTT assay, quantitative PCR analyses, and Immunocytochemistry staining. Results: MTT assay revealed that CTGF stimulate the proliferation but simulated microgravity didn’t have statistically significant effect on cell proliferation. In RNA level the expression of these genes are investigated: collagen type I (COLI), elastin (ELA), collagen type III (ColIII), Matrix Metalloproteinases I(MMP1), Fibronectin 1 (FN1), CD44, Fibroblast Specific protein (FSP-1), Integrin Subunit Beta 1 (ITGB1), Vimentin (VIM) and Fibrillin (FBN). We found that expression of ELN, FN1, FSP1, COL1A1, ITGB1, MMP1 and COL3A1 in both condition, and VIM and FBN1 just in differentiation medium in normal gravity increased. In protein level the expression of COL III and ELN in simulated microgravity increased. Conclusions: These findings collectively demonstrate that the simulated microgravity condition alters the marker fibroblast gene expression in fibroblast differentiation process.    

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition

Objective(s): Studies have confirmed that microgravity, as a mechanical factor, influences both differentiation and function of mesenchymal stem cells. Here we investigated the effects of simulated microgravity on neural differentiation of human adipose-derived stem cells (ADSCs). Materials and Methods:We have used a fast rotating clinostat (clinorotation) to simulate microgravity condition. R...

full text

Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors

Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...

full text

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

full text

Isolation, Characterization and Differentiation of Rat Adipose Tissue Derived Mesenchymal Stem Cells

Introduction:   Mesenchymal stem cells have the potential of self-renewal and differentiation into different cell types, including blood cells, heart, nerves and cartilage, and have unlimited power for division. These cells can be obtained from cord, before implantation from fertilized cells and also from various tissues of adults although the differentiation power and the ability to reproduce ...

full text

expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition

objective(s): studies have confirmed that microgravity, as a mechanical factor, influences both differentiation and function of mesenchymal stem cells. here we investigated the effects of simulated microgravity on neural differentiation of human adipose-derived stem cells (adscs). materials and methods:we have used a fast rotating clinostat (clinorotation) to simulate microgravity condition. re...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 4

pages  241- 251

publication date 2017-12-29

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023